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Future growth in urbanization will mainly occur in cities of the rising south. UN Habitat reports that 
in the past decade, the urban population in emerging economies grew on average 1.2 million people 
per week. By 2050, it is expected that seven out of ten people will be living in cities. An accompanying 
technology to urbanization, the use of cellphones and smartphones has seen unprecedented growth 
in recent decades. Currently there are more active mobile connections (7.8 billion SIM connections 
and 4.8 billion unique mobile subscribers) than people in the world (7.4 billion), with penetration rates 
being large even in low-income economies (89 subscriptions per 100 people). Similarly, the Internet 
of Things – an agglomeration of sensors and actuators connected by networks to computing systems 
– has been rapidly growing with a maximum potential market of $US 11 trillion by 2025. With most 
energy demand, urbanization and connectivity growth in the coming decades occurring in low and 
lower-middle income countries, it is crucial to understand how technology will work in these diverse 
contexts, how it will blend with behavior, culture and context, understand its challenges, and highlight 
opportunities, to users and urban services.  

Using a field deployment pilot in Nicaragua as a case study, the Link Foundation fellowship allowed 
me to explore opportunities for information and communication technologies (ICTs) and the internet 
of things (IOT) in resource constrained environments. I used ICTs and IOT to implement the first 
paired behavioral energy efficiency and flexible demand pilot in Latin America. The work involved 
the design, implementation, and exploratory data analysis of a sensor gateway (the FlexBox) for 
enabling behavioral energy efficiency and demand side flexibility, a Bayesian estimation analysis 
evaluating energy reduction, participation in demand side flexibility, impacts on welfare, and 
behavioral economics insights, and a Bayesian updating framework to better understand the efficiency 
gap in this environment. I present several novel findings related to technology implementation, 
development of new efficiency parameters, and behavioral insights (e.g., incentive types, pre-existing 
behaviors, motivations) describing the opportunities and barriers to behavioral energy efficiency and 
demand side flexibility, and a first estimate of the value of information for users in resource 
constrained environments. I demonstrate that ICTs and IOT are mature technology that can be used 
by low, low-middle income households and small businesses in cities like Managua to enable them as 
important actors in city-wide resource conservation.  

With regards to demand-side flexibility, I found evidence to challenge traditional theoretical 
assumptions about the behavior of thermostatically controlled loads (e.g. coefficient of performance, 
duty cycle, temperature set points and dead band width), finding that user behavior and the efficiency 
of TCLs significantly affects resource availability and the large-scale potential for demand response 
(DR) – features that are largely ignored in the literature. The evidence suggests that there should be 
two efficiency parameters that should be considered in DR – the coefficient of performance, and the 
efficiency performance index. Concepts in behavioral economics (e.g., the psychology of scarcity, 
prospect theory and the endowment effect) are used to explain some of the challenges encountered 
in the field, and how these could potentially hinder the growth and success of future energy efficiency 
and flexible demand pilots. To my knowledge, this is the first paired behavioral energy efficiency and 
flexible demand implementation in Latin America, and the first to explain the observed field results 
related to behavioral energy efficiency using concepts from the psychology of scarcity.  

The FlexBox, the approach and system used to engage field participants and flexible ubiquitous loads, 
and the findings from our willingness to pay study, can be used to inform future ICT/IOT 
deployments and the development of new and inclusive systems for participatory low- carbon urban 
environments.  
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1. Papers, Reports and Presentations Acknowledging the Link Foundation 
 

** Ponce de Leon Barido, D., Wolfson, D., Callaway, D. The Marginal Value of Energy 
Information in Urban Resource Constrained Environments (In Adv Prep).  	

** Marsters, P., Castro Alvarez, F., Ponce de Leon Barido, D., Kammen, M.D. Sustainability 
lessons from shale development in the United States for Mexico and other emerging unconventional 
oil and gas developers. Renewable and Sustainable Energy Reviews 2017. Renewable and Sustainable 
Energy Reviews Link.  

** Ponce de Leon Barido, D, Nsutezo, S., and Taneja, J. The natural and capital infrastructure of 
potential post-electrification wealth creation in Kenya (Published in Energy, Sustainability, and 
Society 2017 7:28) Energy, Sustainability and Society Link. 	

with support from the Link Foundation: 

Ponce de Leon Barido, D., Suffian, S., Callaway.,  Kammen. M.D.  Enabling Behavioral Energy 
Efficiency and Flexible Demand in Data-Limited Low-Carbon Resource Constrained Environments 
(Accepted: Applied Energy).  

(Best Paper Finalist) Ponce de Leon Barido, D., Rosa, J., Suffian, S., Brewer, E., Kammen, M.D. 
Enabling Micro-Level Grid Flexibility in Resource Constrained Environments. IEEE IoTDI ’17 
Proceedings of the Second International Conference on Internet-of-Things Design and 
Implementation. Pages 233-245. Pittsburgh, PA, USA — April 18 – 21, 2017. ACM Link  

Presentations acknowledging support from the Link Foundation 

• The Cities and Climate Change Intergovernmental Panel on Climate Change (IPCC) Science 
Conference (Edmonton, Alberta, Canada). Panel on Smart Cities and Their Promise for Addressing 
Climte Change in Cities: “Behavioral Energy Efficiency and Flexible Demand in Little- data Low 
Carbon Resource Constrained Environments: A Case Study in Nicaragua”. March 6th 2018.    
• U.S. Department of Energy Webinar on Approaches to Energy Efficiency from Around the 
Globe: “Going for Gold: Medal-Worthy Approaches to Energy Efficiency from Around the 
Globe”. Panel on ‘Behavioral Energy Efficiency and Flexible Demand in Little-data Low Carbon 
Resource Constrained Environments: A Case Study in Nicaragua’. February 8th 2018.   
• Stanford University Energy Week. Panel on ‘Experiences in the Development and 
Implementation of Smart Grid Technology for Resource Constrained Environments’. October 17th 
2017.   
• Behavior and Energy Climate Conference. A Field Pilot to Enable Flexible Demand and 
Behavioral Energy Efficiency in Low-Carbon Resource Constrained Environments. January 22nd 
2018.   
• IEEE Internet of Things Design and Implementation. Pittsburgh, PA. Enabling Micro-Level 
Demand-Side Grid Flexibility in Resource Constrained Environments. April 20th 2017.   
• INCMTY Entrepreneurship Conference. Monterrey, Mexico ‘niuera – tecnología para una 
transición energética baja en carbono, justa, y sustentable’. November 2016. 
 
Presentations with the support from the Link Foundation: 
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• 1st National Geographic Explorers Festival in Latin America (Mexico City). Environmental 
Justice and Technological Activism: Issues and Breakthrough Solutions. February 8th 2018. 
• Stanford Energy Club. Enabling Micro-Level Demand-Side Grid Flexibility in Resource 
Constrained Environments. May 25th 2017.   
• Mexican Consulate in San Francisco, CA ‘Academia Meets Tech’ – ‘El Nexo Energia, Tecnologia, 
Sociedad’. October 2016.   
• Banato Auditorium Sutardja Dai Hall, University of California Berkeley. Faculty Forum on 
‘Resilience in the face of Global Change’. ‘The Distributed Energy Collective: Opportunities and 
Challenges in the Transition to a Post-Petrol Future’. September 2016.   
	

2. How did the fellowship make a difference? 
 

None of my work research would have been possible without the support of the Link Foundation 
Fellowship. As an international student, there are extremely limited scholarships that I could apply to 
for pursuing research that would allow me to create and implement field projects at the intersection 
of technology innovation, data mining and behavioral science. The fellowship gave me the opportunity 
to travel, design technology, develop partnerships, collect and analyze data and publish at will. I will 
forever be indebted to the Fellowship and I’m immensely thankful for the opportunity. Now, I have 
turned some of my research into a company xinampa.io, and in large part, the Link Foundation 
Fellowship made this possibility come true. I will contribute to the betterment of our society through 
work and research that is ground on evidence, science and equity. Thank you.  
 

3. Executive Summary of Results 
 

The increased penetration of uncertain and variable renewable energy presents various resource and 
operational electric grid challenges. Micro-level (household and small commercial) demand-side grid 
flexibility could be a cost-effective strategy to integrate high penetrations of wind and solar energy, 
but literature and field deployments exploring the necessary information and communication 
technologies (ICTs) are scant. In this first section I present an exploratory framework for enabling 
information driven grid flexibility through the Internet of Things (IoT), and a proof-of-concept 
wireless sensor gateway (FlexBox) to collect the necessary parameters for adequately monitoring and 
actuating the micro-level demand-side. In the summer of 2015, thirty sensor gateways were deployed 
in the city of Managua (Nicaragua) to develop a baseline for a near future small-scale demand response 
pilot implementation. FlexBox field data has begun shedding light on relationships between ambient 
temperature and load energy consumption, load and building envelope energy efficiency challenges, 
latency communication network challenges, and opportunities to engage existing demand-side user 
behavioral patterns. Information driven grid flexibility strategies present great opportunity to develop 
new technologies, system architectures, and implementation approaches that can easily scale across 
regions, incomes, and levels of development.  

Our research pilot in Managua (Nicaragua) consisted of thirty FlexBoxes attached to twenty freezers 
(micro-enterprises) and ten refrigerators (households) and a centralized server that stored data, 
performed analyses, and provided control signals. Each FlexBox collected fridge inside temperature, 
humidity, TCL energy consumption, and total household energy consumption and stored it in a local 
database. Data was sent over 3G to a centralized server where it was merged with time stamped open 
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access grid and weather data. Statistical and control scripts in the server can algorithms and 
simulations, and when necessary, actionable DR signals would be sent to participatng thermostatically  

controlled loads (TCLs, refrigerators and fridges) to either be turned off or return to their normal 
cycling schedules. This central server also provided web-based tools to export data for off-line analysis, 
user energy reports, and intuitive visualizations that allow interested parties to easily understand the 
state of the overall system.  

 

 

 
 

 
 

 

  

 

 

 
 
 
 

 
 
 
 
 
Figure 1: [A] FlexBox System Concept: The enumerator downloads new FlexBox software and new surveys 
from the cloud server. The enumerator also collects data from the FlexBox via Ethernet or Wi-Fi and sends it 
to the cloud server. A Huawei E3531 modem opens two-way communication streams between the FlexBox 
and the cloud server, uploading data and downloading updated control laws. Open access grid and weather data 
are stored in the cloud server as well as an archive of transmitted data, and [B] FlexBox Wireless Sensor 
Gateway Components.  
  
Data collected via the FlexBox allowed us to understand important thermal parameters and 
characterize energy-ambient and communication dynamics that would allow for us to control 
refrigerators remotely without affecting products inside the refrigerator and without affecting 
participants and the usage of their appliances. The figures below summarize some of our field 
deployment findings.  
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motivation of the project, is often the easiest to satisfy as it is 
sufficiently under the control of the researchers. 
 

IV. PROOF OF CONCEPT DEMONSTRATION  
The FlexBox is designed for ubiquitous TCL and 

household sensing, monitoring and load control. In this section 
we discuss the principles of operation, the hardware and 
software implementation.  

A. Principles of Operation 
Our research pilot in Managua (Nicaragua) consists of 

thirty FlexBoxes attached to twenty freezers (micro-
enterprises) and ten refrigerators (households) and a 
centralized server that stores data, performs analyses, and 
provides control signals. Each FlexBox collects fridge inside 
temperature, humidity, TCL energy consumption, and total 
household energy consumption and stores it in a local 
database. Data is sent over 3G to a centralized server where it 
is merged with time stamped open access grid and weather 
data. Statistical and control scripts in the server can run 
simulations, and when necessary, actionable DR signals can 
be sent to participating TCLs to either be turned off or return 
to their normal cycling schedules. This central server also 
provides web-based tools to export data for off-line analysis, 
user energy reports, and intuitive visualizations that allow 
interested parties to easily understand the state of the overall 
system.  

B. Hardware Implementation 
FlexBox processing and data storage is managed by a 

Raspberry PI B+. This platform provides a full operating 
system as the development environment which provides a 
richer feature set familiar to all researchers (UC Berkeley and 
UNI), which would not be the case if a simpler system  were 
used, such as an mBed or Arduino microcontroller, which use 
a subset of C++. Four USB ports are used to add and test 
wireless communications peripherals for local device 
communications using the Z-Wave protocol, Wi-Fi, flash 
backup storage, and a USB Huawei E3531 3G modem. An 
mPower Ubiquiti (from here onwards referred to as mPower) 
device is used for refrigerator monitoring and control.  As 
SSH is the primary means by which the mPower is controlled, 
the use of a GNU/Linux operating system makes its control by 
the Raspberry PI B+ trivial.  SSH can also be used to connect 
to the FlexBox and download the data using SCP. An onboard 
storage microSD card on the Raspberry PI B+ makes data 
collection much simpler. If all other avenues fail to 
communicate the data to our server (an enumerator collecting 
data via Wi-Fi, or a 3G modem streaming data to our cloud 
server) the card can be mounted and read using a GNU/Linux 
based laptop. The modem is used to stream a subset of the 
data to our server, to control the FlexBox system, and to test 
the quality of the GSM network. The Ethernet port provides a 
fail-safe communications channel with the device. The 
software control system is developed using a combination of 
R, Python, and PosgreSQL. Bash scripts and CRON jobs are 

used to manage automated reboots, backups, and data 
archiving. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
          Figure 2. FlexBox Wireless Sensor Gateway Components 

 
There are 7 sensors used in each FlexBox. Two 

DS18B20 waterproof temperature sensors (located inside the 
refrigerator) take measurements inside, a DHT22 temperature 
and humidity sensor monitors the room environment. A 
magnetically actuated reed switch monitors door openings. A 
mPower device controls the refrigerator and monitors power 
consumption. Finally, an Aeotec Power meter monitors house 
power consumption (located at the electric service panel). 
Several additions were made to the sensors and cables, 
including a small cage to surround the DS18B20s temperature 
sensors to minimize thermal contact conductance when inside 
the refrigerator as well as a thin telephone cable to extended 
the DS18B20s length (and allow for the refrigerator door to 
seal completely). FlexBox power and all sensors (connected 
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Figure 2: [A] Table 1: Field Data and Thermostatically Controlled Load Parameters, and [B] 
Normalized TCL Energy Consumption by Unit. Contrary to previously held assumptions that 
assumed no changes, key parameters such as the duty cycle, the coefficient of performance, energy 
consumption, and the efficiency performance index all varied in time, user behavior and temperature.  

Data collected in the field allowed us to characterize real load parameters for the TCL population that 
we would be controlling, and that were very different than those that would have been assumed by a 
theoretical model (and these are usually assumed to stay constant). For example, we find that the duty 
cycle (the ratio of time it takes for a refrigerator to traverse its dead-band in an on state vs. total time 
in compressor on and off states) fluctuates during the day. Our field data suggests that the freezers 
and refrigerators spend more time in the compressor-on stage during the middle of the day (when it’s 
hottest and when there is more activity) than other parts of the day. Evidence from these field data 
diverge from previous TCL modeling assumptions that suggest that the duty cycle (and energy and 
power capacities) is fixed throughout the day. We also compare the coefficient of performance, which 
was measured in an experimental setting at UC Berkeley, to an efficiency performance index, which 
was calculated from data. We find that while the experimental COP ranged between 0.01 and 0.03 and 
stayed fairly constant throughout the day (with minimal heat or behavioral disturbances), the efficiency 
of performance index (EPI) observed in the field ranged drastically between 0.0045 (minimum) and 
18 (maximum). While it would seem like the EPI index is consistent across field units (Fig 8), we find 
that the performance efficiency of the refrigerator (the amount of work required to remove heat from 
a cold reservoir) varies within the day. More active and hotter times of the day observe lower EPI 
values than other days.  
 
There were many more findings in our research, but very broadly, we found that our system 
implementation that can inform how theoretical models could incorporate data from wireless sensor 
gateways in the future: (1) the use of surveys and baseline data collection could be used for more 
realistic assumption building before modeling begins, (2) while some recent work has begun to 
calculate the uncertainty resource potential for demand response, little attention has been placed on 
how user behavior increases the energy and temperature uncertainty of DR resource availability, (3) 
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Figure 7. Room temperature of household and micro-enterprises (red) vs. 
ambient weather station data (blue): Houses and micro-enterprises directly 
experience the ambient weather station temperature on the streets of 
Managua. In the morning, late afternoon, evening and night, the weather 
station experiences higher temperatures than the households and micro-
enterprises.  
 
unplugging of TCLs most units engage in. 

Furthermore, we find that the duty cycle (the ratio of time 
it takes for a refrigerator to traverse its dead-band in an on 
state vs. total time in compressor on and off states) fluctuates 
during the day.  Here, field data suggests that the freezers and 
refrigerators spend more time in the compressor-on stage 
during the middle of the day (when it’s hottest and when there 
is more activity) than other parts of the day. Evidence from 
these field data diverge from previous TCL modeling 
assumptions that suggest that the duty cycle (and energy and 
power capacities) is fixed throughout the day.   

We also compare the coefficient of performance, which 
was measured in an experimental setting at UC Berkeley, to 
an efficiency performance index, which was calculated from 
data. We find that while the experimental COP ranged 
between 0.01 and 0.03 and stayed fairly constant throughout 
the day (with minimal heat or behavioral disturbances), the 
efficiency of performance index (EPI) observed in the field 
ranged drastically between 0.0045 (minimum) and 18 
(maximum). While it would seem like the EPI index is 
consistent across field units (Fig 8), we find that the 
performance efficiency of the refrigerator (the amount of work 
required to remove heat from a cold reservoir) varies within 
the day. More active and hotter times of the day observe lower 
EPI values than other days. The rated power of these 
appliances ranged from 0.1 to 2.2 kW according to the 
manufacturer label and size; this would result in a mean 
annual consumption range between 280 and 6000 kWh. Our 
field data suggests that the actual mean annual energy 
consumption was 1400 kWh for the entire cluster. Findings 
from our field data and experiment could be used to better 
inform the modeling of TCLs for ancillary services as 
theoretical models usually assume constant duty cycles, 
energy and power capacities and performance efficiencies.  

 
 

 
 
 
 
 
 
 
 

 
 

Table 1. Field Data TCL Thermal Parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Normalized TCL Energy Consumption by Unit [top] and TCL 
Efficiency Performance Index for all Units [bottom]: [Top] We observe 
TCL energy consumption to be, on average, higher in the middle of the day 
than other parts of the day, and [Bottom] we find the efficiency performance 
index (the ratio between the work that is required to remove heat from a 
reservoir and the heat removed from a reservoir) also varies during the day, 
and is worst in the middle of the day when it is hottest and when the TCL 
experiences most activity.  
 

C. Communications Network EDA 
As part of a test for the reliability and capacity of the 
communications network, we installed five 3G Huawei E3531 

Parameter Symbol  
(Units)

  Mean (SD: Min -- Max)

Ambient temperature θa (°C) 30 (3: 10 -- 41)
Dead-band width δ (°C) 9 (4: -10 -- 35)
Temperature set point1 θset (°C) -20 -- 5
Duty cycle D (-) 0.52 (0.31: 0.1 -- 0.9)
Coefficient of performance2 η (-) 0.01 - 0.03
Efficiency performance index η.e (-) 1.8 (2.4: .0045 - 18)
Power consumption1 P (kW) 0.1 -- 2.2
Mean Annual Energy Consumption per TCL1 MAEC (kWh) 280 -- 6000 
Actual Mean Annual Energy Consumption per TCL AMAEC (kWh) 1400

[1] From product details found in the field and from local refrigerator and freezer providers.

[3] The rest of the data was obtained from the field.

[2] From controlled laboratory experiments.The literature suggests that the COP ranges between 
1.5 and 2.5, we did not observe this in our controlled experiment. COP is a ratio of Qc (heat 
removed from a cold reservoir) over Wref  (the work input required to remove heat from the cold 
reseroir). Experimentally, we calculated the COP for a freezer and refrigerator that were empty, but 
on the field we assumed freezers and refrigerators to be 3/4 full. That is, we used the heat capacity 
of air and water to calculate the efficiency performance index for our field data.
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on the field we assumed freezers and refrigerators to be 3/4 full. That is, we used the heat capacity 
of air and water to calculate the efficiency performance index for our field data.
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control algorithms are usually top-down with a load aggregator assuming user and load behavior and 
consumption patterns; we argue that a more holistic modeling approach could be the development of 
bottom-up – top-down models that incorporate behavior and appliance efficiencies in model building, 
(4) communication networks and enabling systems (such as our FlexBox) are usually discussed in the 
abstract, yet, the types of ancillary services that can be provided at the micro-level are conditional 
upon the capabilities of a specific system or technology, and (5) research on DR communication 
protocols are likely to affect not only what different services can be provided but also the design and 
cost-effectiveness of the enabling system itself. The communications network’ exploratory data 
analysis suggested that DR faces several communication challenges ahead which include a large 
discrepancy in the spatial quality of communications service, a high frequency of dropped packets 
across the network, and a high frequency in the difficulty to reestablish a connection.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Image 1.  The FlexBox in a Micro-Enterprise in Managua, Nicaragua. One can see the thermocouples 
inside the freezer, the box with the modem, microprocessor, modem, and telemetry, and in the back the switch 
controller that would be turned on and off at different times of the day depending on grid signals. 
 
Randomized Controlled Trial Implementation 
 
After fully understand the thermal parameters, and constructing an entire technology framework to 
control TCLs remotely, we proceeded to implement a randomized controlled trial with 60 participants 
in low-middle income neighborhoods across the city of Managua. Below, I briefly present results of 
the first randomized pilot providing tandem behavioral energy efficiency and flexible demand services 
through the use of distributed sensor networks in Latin America (Managua, Nicaragua). My analyses 
show that the houses and micro- enterprises randomly assigned to the intervention reduced their 
energy consumption by nine percent relative to the control group, and participated at length in peak-
shaving flexible demand events (380% of events). Identified social co-benefits included increased 
energy literacy, financial management and user empowerment, and find that improved access to energy 
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information was more important than cash when incentivizing project participation with a high user 
willingness to pay. Several challenges may hinder the success of smart systems in resource constrained 
environments, including temporal and financial scarcity at the household level, lack of institutional 
support, and a panoply of top-down misaligned incentives. I document the multiple barriers to scale 
flexible demand and energy efficiency strategies, including bottom-up (e.g., appliance financing) and 
top-down (e.g., decoupling) challenges and discuss ways to overcome them. As more low, low-middle 
income countries transition away from fossil fuels, the use of sensor networks and information and 
communication technologies for building smart and inclusive smart systems will become increasingly 
necessary and attractive.  
 
The intervention, consisted of a sensor gateway configured to collect consumption and temperature 
data and to interrupt power to connected refrigerators (also called a Flexbox), monthly reports with 
high-resolution energy information, real time energy alerts (warning users when they approached their 
monthly energy consumption goals), and a demand flexibility program that curtailed appliances using 
the Flexbox according to user-defined schedules and during daily peak grid pricing events. In exchange 
for participation, the treatment group received co-designed and user-tailored energy information and 
real time alerts, as well as a $US 6 flexible demand monthly payment. Each FlexBox contained a switch 
to interrupt power to connected appliances and sensors measuring fridge or freezer internal 
temperature, room temperature and humidity, fridge door activity and fridge energy and power 
consumption. We monitored household and business power consumption at the electric service panel 
and used a GSM modem for data transmission and switch actuation.  
 
The intervention had three features: Monthly reports, real time energy alerts and a demand flexibility 
program that included a US$6/month payment. Monthly reports were co-designed with participants 
and provided (i) Nicaragua’s monthly electricity generation by resource, (ii) the user’s current and 
historical monthly values for: average hourly consumption (total and fridge only), weekly consumption 
(total and fridge only), and monthly total consumption and (iii) relationships between: ambient 
temperature and consumption (household and fridge), fridge door openings and fridge consumption, 
and fridge internal temperature and consumption. For monthly real-time energy alerts, users set a 
consumption goal for the upcoming month and texted it to our cloud server, which then sent SMS 
energy alerts to the user as various energy consumption thresholds were crossed (e.g., “Careful! You 
have reached 90% of your monthly energy budget!”). Demand flexibility could be programmed by 
users (e.g. off in specified hours of the day) and by our servers on days with high forecasted wholesale 
electricity prices. Users were notified of flexible demand events lasting from one to three hours one 
day in advance and were able to opt out any time before (by sending a text message), or during a 
flexible demand event by switching outlets on a power strip provided by the project.  
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Table 2: Selection of baseline characteristics and perspectives on financial burden and 
future concerns. 

 
 
The FlexBox allowed us to continuously collect key parameters for monitoring energy consumption 
and the state of participants’ thermostatically controlled loads (TCLs), fridges and refrigerators. For 
example, the sensor network presented evidence to suggest that the temperature inside households 
and micro-enterprises was higher than outside ambient temperatures during the hottest part of the 
days due to the use of non-reflective infrastructure materials that would capture heat and provide no 
insulation. This led to the energy consumption of TCLs to vary across our sample depending on 
ambient temperature (a characteristic that is not taken into account in most thermal models). The duty 
cycle (the ration of time it takes for a refrigerator to travers its dead-band in an on state vs. total time 
in compressor on and off states) was also found to fluctuate during the way (a parameter that is kept 
constant in most thermal models). Sensor data presented evidence that diverges significantly from 
previous TCL modeling assumptions that have been published elsewhere. The data distribution of key 
TCL thermal parameters included ambient temperature (mean: 30°C,  standard deviation: 3°C), dead-
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Table 1. Selection of baseline characteristics and perspectives on financial burden and future 

concerns.  

 
Sample   
Houses N = 219 

Micro-Enterprises N = 216 
Age - Mean (Standard Deviation) 47 (SDV = 15) 

Education First two-years of high school 
Household size 5.5 people per household 

    
Average vs. Disposable Income ($US/Month)   

Houses $550 vs $70 
Micro-Enterprises $520 vs $182 

    

Median Monthly Energy Consumption (kWh/month), Energy Costs 
($US/month) and Cost per Unit of Energy ($US/kWh)   

Houses 160 kWh/month, 30 $US/month, 0.19 
$US/kWh 

Micro-Enterprises 305 kWh/month, 71 $US/month, 0.23 
$US/kWh 

Total bill Houses vs. Micro-Enterprises1 22 $US/month vs. 86 $US/month 
    

Financial Burden2   
What is a problem that is recurrently on your mind?   

(1) Energy, (2) Food, (3) Access to basic services 23%, 20%, 12% 
    

What is the biggest financial burden on your small business?2,3   
(1) Energy, (2) Loans, (3) Employees 88%, 5%, 3% 

    

Approximately what fraction of your total costs are energy related costs?  Median (25th 
percentile - 75 th percentile)    

Houses 8% (4% - 19%)  
Micro-Enterprises 30% (12% - 48%) 

    

Future Issues3   
Of the following issues, which ones do you consider to be of most concern in the future?   

(1) Climate change, (2) Oil dependency, (3) Electricity prices 36%, 24%, 20% 
    
    
[1] The total monthly bill is lower than the total monthly enery cost because the total cost is reduced if the house or micro-
enterprise manages to be below a monthly consumption of 150 kWh/month 

[2] Perceived financial burden   
[3] Only the three most popular perceived financial burdens andf future issues are presented. 
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band width (mean: 9°C, sd: 4°C), temperature set point (min: -20°C, max: 5°C), duty cycle (mean: 
0.52, min: 0.1 – max: 0.9), coefficient of performance (0.01 – 0.03), and efficiency performance index 
(mean: 1.2, sd: 2.4).  
 
Sensor baseline data was collected from July 2015 to January 2016, during which there was no 
interaction with the participants. From January 2016 to July 2016 there was a co-design period where 
we worked with the treatment group (roughly once per month) to develop clear and useful information 
snippets (text and figures) for the monthly paper reports they would receive, as well as to ensure that 
the real-time SMS energy alerts were clear and understandable by everyone. The intervention (monthly 
energy reports, flexible demand and real-time text-messaging) began in July 2016 and lasted until 
December 2016. No project participants left the project once the demand flexibility intervention 
began. Further intervention details are provided in the SI.  
 
Given the balanced outcomes of our treatment and control group participants, we use Bayesian 
Inference for inter-participant and group comparisons. The approach is robust for two groups and 
small samples, handles outliers, and provides complete distributions of credible values for group 
means and standard deviations (and their difference), effect size, and the normality of the data. Thus, 
Bayesian Inference estimates five parameters: means of treatment and control (µ

1 and µ
2
), standard 

deviations of treatment and control (s
1 and s

2
), and the normality of the data between treatment and 

control (v).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Bayesian Posterior Estimates Treatment (µ1) vs. Control (µ2): [A] Pre-implementation monthly 
energy consumption (kWh/month), [B] post-intervention monthly energy consumption (kWh/month), 
[C]month-by-month differences (kWh/month) during the intervention period (e.g., comparing energy 
difference between August and September 2016) and [D] annual differences (kWh/month) between the same 
months one year afterwards (e.g., August 2015 vs. August 2016). Black line on x-axis represents the 95% high 
density interval (HDI), and the red line represents the regional of practical equivalence (ROPE). Median 
temperature was 30.6 °C in 2015 (sd: 14.5 °C) vs 31.2 °C in 2016 (sd: 15.1 °C), median temperature pre- vs. 
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comparisons, having [D] as our most robust result. The treatment group experiences energy 
reductions, despite a small increase in ambient temperature (measured by a weather station). Details 
are discussed in the text and the full Bayesian parameter estimation is provided in the SI.  
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Post-Implementation
Monthly Energy Consumption (kWh)

Post-Implementation:
Same Month + 1 Year Difference (kWh)Post-Implementation:
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post intervention months was 31.5 °C in (sd: 14.8 °C) and 30.4 °C 2016 (sd: 15.1 °C) respectively. We highlight 
year-to-year temperature comparisons, having [D] as our most robust result. The treatment group experiences 
energy reductions, despite a small increase in ambient temperature (measured by a weather station).  
 
 
We evaluate three different results: (A) pre- vs. post-implementation monthly energy consumption 
(e.g., August 2015 – June 2016 vs July – December 2016), (B) month-by-month differences during the 
intervention period (e.g., comparing energy differences between August and September 2016), and 
(C) annual differences between the same months one year afterwards (e.g., August 2015 vs. August 
2016). Users are compared to themselves during and at these three different time points to control for 
number of appliances, household characteristics that affect ambient temperature (e.g., roof and wall 
type, presence of sky lights), people in household, education, and other baseline characteristics. The 
comparison in (C) controls for seasonal variations in consumption and federal holidays that affect 
both weather and behavioral patterns, and is thus our most robust comparison. For flexible demand, 
we use Bayesian estimation to identify credible differences in refrigerator and freezer energy 
consumption pre-vs. post-implementation (all hours), and a subset of peak pricing hour events. The 
SI includes full Bayesian estimation results. Our analysis uses the R statistical programming language, 
the MCMC sampling lag called JAGS, and the BEST program for Bayesian means tests in R.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Bayesian Estimation Results Pre- vs. Post Flexible Demand Intervention: Mean Differences 
of Pre- vs. Post Intervention Fridge Energy Consumption: [A] Posterior distribution of mean differences pre- 
vs post-intervention for all hours (0-23), [B] Differences pre-vs post intervention for all hours by participant id 
(differences in Wh), and [C] Posterior distribution of mean differences within a subset of hours in which there 
were peak price events. [A] suggests that there is no difference between fridge energy consumption pre- vs. 
post intervention, and [C] suggests that Event Hours: Fridge Energy Consumption Pre- vs Post Intervention 
Difference (Wh) there was a large credible reduction post-intervention during peak pricing event times.  
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We use three different measurements to evaluate the effect of our intervention on total energy 
consumption: (A) post-intervention monthly energy consumption (e.g., August 2015 – June 2016 vs. 
July – December 2016), (B) month-by-month differences during the intervention period (e.g., July vs. 
August 2016), and (C) differences between the same months in consecutive years (e.g., August 2015 
vs. August 2016). The latter controls for both seasonal consumption variation and federal holidays 
(e.g., Independence Day), with each participant in the treatment and control group being compared 
with itself one year ago for every month during the intervention period. We compare differences in 
treatment and control for (A), (B), and (C) using Bayesian estimation and as described in the methods 
and SI.  
 
We observe the treatment group reducing its total household or small-business energy consumption 
relative to the control group in all these comparisons, by (A) 13.4 kWh (6%), (B) 7.46 kWh (4%), and 
(C) 16.2 kWh (9%) respectively (Figure 3). For post-intervention and month-by-month comparisons, 
however, our high-density interval (HDI) falls over zero and within the region of practical equivalence 
(ROPE) suggesting that our results are not credibly different from zero or from values with a 
significant effect size. For month-annual differences, however, both zero and ROPE are fully outside 
the HDI suggesting that our results are credibly different from each other and zero. We consider the 
latter to be the most robust result as it controls for several unobserved factors such as variation in 
seasonal consumption, federal holidays, within household variability (e.g., behavior, number of 
appliances), and compares both groups to each other.  
 
Peak prices for flexible demand events were identified one day in advance; events lasted up to three 
hours (see SI for details). Project participants were opted-in to the flexible demand events (with ability 
to withdraw at any given time), and participated an average of 40 minutes for every hour of a peak 
pricing event, (median: 53 minutes, sd: 20 minutes) or 70% of the time of every event (median: 88%, 
sd: 34%). Pooling together all hours, there was no credible difference between pre- and post-
intervention fridge energy consumption (mean difference Wh: 0.301, sd difference Wh: 20). However, 
there was a large usage reduction during flexible demand event hours (mean reduction post-
intervention Wh: 78.3, sd: 48.2)  Based on these results we estimate that if one third of the population 
(2 million people) received paper reports and energy alerts, Nicaragua could save $US 29 million in 
wholesale energy costs annually (using average prices), and if this same population participated in 
flexible demand they could save $US 18 million annually (using differences between peak and off-
peak prices). Using actual generation emissions from Nicaragua’s grid in this scenario, behavioral 
energy efficiency could save over 6 million metric tons of CO

2
eq annually (using average monthly 

emissions) and flexible demand would avoid over 3 million metric tons of CO
2eq (using peak prices 

hourly average emissions).  
 
For tracking improvements related to energy literacy, we measured the accuracy of perceived vs. actual 
energy consumption ($US and kWh) at baseline, intervention, midline, and endline. At baseline, the 
treatment group had a slightly larger overestimate of their perceived energy costs relative to the control 
group (median: $US 7 vs. $US 5, respectively). When the intervention began, and likely due to the co- 
design of the energy information mechanisms, the treatment group had improved its ability to recall 
its actual consumption within an error $US 2 and largely maintained this improved accuracy 
throughout the midline (error: $US 3 treatment vs. $US 4 control) and endline surveys (error: $US 1 
treatment vs $US 3 control). Although both groups increased their accuracy throughout the pilot, the 
treatment group had a greater improvement in accuracy of $US 6 against a $US 2 improvement by the 
control. The treatment group also significantly improved the accuracy of recalling their actual energy 
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consumption (kWh) from a baseline underestimate of 30 kWh, to a mean endline underestimate of 14 
kWh (median: 0 kWh, sd: 118 kWh). The control group, on the other hand switched from an 
underestimate of 30 kWh to an overestimate of 20 kWh (median: 6 kWh, sd: 117 kWh). During the 
final survey, we used two additional metrics to evaluate whether increased attention to energy bill data 
permeated to other non-previously surveyed metrics: accuracy at recalling the unit cost of energy, and 
monthly water expenditures. On average, the treatment group had almost a perfect grasp of the unit 
cost of energy (mean error: $US 0/kWh, median error: $US 0/kWh, sd: $US 0.06/kWh), while the 
control group had a mean error of $US 0.5/kWh (median error: $US 0.07/kWh, sd: $US 0.99/kWh), 
which is 2.5 times higher than the actual unit cost of energy. With regards to water expenditures, the 
treatment group had, on average, a $US 2/month underestimate of their water bill (median: $US 
12/month, sd: $US 101/month), while the control group had a $US 56/month overestimate (median: 
$US 9.74 month, sd: $US 155/month).  
 
Identified co-benefits through surveys and interviews include information spillover, user 
empowerment, and the potential for high-resolution information to reduce energy-bill induced stress. 
Some project participants reported that they forwarded energy information to others (extended family 
and friends), suggesting that the recorded information benefits could be an underestimate, as those 
others might have also reduced energy consumption in response. In our sample, home and small 
business energy management was performed mostly by women, several of whom reported that post- 
intervention they received new respect for their financial and energy management ideas. Women 
would use information to highlight management strategies that were being successful including 
limiting consumption (e.g. televisions only in certain hours, fans only during the day), and scheduling 
some energy-consuming activities such as washing once a week or bi-weekly. Research elsewhere, 
however, has found that interventions to support behavioral energy efficiency can negatively impact 
household power (and gender) dynamics, with men suggesting to reduce the use of common gender 
specific appliances (e.g., hair dryers) and placing the workload of energy management primarily on 
women. Though limiting use of comfort appliances such as fans could have negative side- effects (e.g., 
heat stress), these issues were not brought up by participants.  
 
Our intervention, however, was unable to reduce the user’s perceived high stress of energy bills. At 
baseline, the most common feeling amongst treatment and control groups was that electricity was 
“very hard to pay” (1: easy to pay, 2: more or less hard to pay, 3: very hard to pay, 4: extremely hard 
to pay). At the end of the study, stress remained the same and was unaffected by flexible demand 
payments, more controlled scheduling, information, or actual reductions in consumption. 
Furthermore, although energy reports included suggestions and advice on a variety of efficiency 
retrofits, the participants implemented none. Reasons for failure to neither save, nor spend money on 
retrofits included the continued reoccurrence of immediate pressing needs (e.g., energy bill, education, 
health), perceptions that flexible demand payments were too small to be saved (i.e., it was better to 
use them for immediate needs), lack of awareness about how to purchase, retrieve and install new 
appliances, lack of transportation and time, and perceived high cost of new appliances. When  
participants were asked if they would forgo payments if someone else purchased and installed efficient 
appliances for them, 85% answered “yes”, with participants willing to exchange one payment month 
or all future payments to receive help in long term energy efficiency retrofits.  
 
Spending new income on pressing needs rather than making investments in the future, and inability 
to act (or choosing not to) to resolve constant stressors are well explained by the psychology of 
scarcity. In scarcity, tunneling is a behavior that might help solve an immediate primary problem, but 
a heightened focus on immediacy can make one short sighted, leaving less attention for other less 
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pressing issues that are recurrently neglected. Although our participants had good intentions (e.g., 
saving energy now), they were unable to create and follow a long run savings plan. Our surveys 
indicated that saving energy involved diligent work where one missed text-message, an unexpected 
visitor, or a sick child would impede saving energy plans. Despite real energy savings and small cash 
infusions, the lack of slack (mental and financial) and constant external shocks (temporal and financial) 
caused actions consistent with the psychology of scarcity]. Participants highlighted that their greatest 
perceived benefit was bill stability, which presumably reduced financial shocks to their household 
budget.  
 
Our research shows that information systems provide multiple benefits beyond their immediately 
intended goals in low-carbon, resource constrained environments. First, this work has demonstrated 
that flexible demand interventions can be incredibly successful if they consider inherent behavioral 
and social characteristics of end-users. This was exemplified by turning the high-resolution data 
collected for automation and control of flexible loads (e.g., freezers and refrigerators), into high- 
resolution real-time feedback that led to important behavior change and energy efficiency savings. 
Equally important were the derived co-benefits from our implementation. Energy literacy, knowledge 
creation, empowerment and budget management all emerged as co-benefits beyond the immediate 
energy, environmental and cost savings of our program. At the same time, there are multiple challenges 
for energy efficiency and flexible demand services in ‘real world’ settings like Managua, and services 
that do not provide a suite of enabling products will unlikely receive popular end-user support.  
 
The results and lessons learned from our implementation suggest that there are important design 
elements that may lead to the success or failure of future applications of tandem behavioral energy 
efficiency and flexible demand programs. Three key elements for a successful implementation include: 
(1) High resolution interaction, co-design and good customer service, (2) understanding and support 
of user intrinsic motivations, and (3) creation of new locally relevant business models. In communities 
with little top-down support for energy efficiency, or waste management, as our demonstration project 
suggests, the combination of (1), (2) and (3) can lead to high end-user engagement, positive interactions 
with the local community, increased persistence, and the creation of new models of end-user 
engagement that are not dependent on top-down stakeholders (e.g., governments, utilities). These 
opportunities, however, are only capitalized if they are thought about from program design, as it is 
necessary to continuously collect data to validate improvements or hypotheses to be explored. In our 
implementation, (1), (2), and (3) were manifested in the form of (1) co-design of information systems 
with users so that feedback mechanisms would be immediately useful and easily understood (only 
variables that users deemed important were provided to them), (2) encouraging program participation 
by mainly focusing on energy independence and monetary savings, and (3) identifying all the barriers 
that users faced to achieve their desired energy efficiency goals (e.g., access to finance, inefficient 
appliances, and needed household retrofits) and providing information for end-users to access 
solutions that could reduce these barriers (e.g., access to sustainable financing for new appliances and 
retrofits).  
 
Design flaws that may jeopardize future energy efficiency and flexible demand implementations (small 
pilot projects or large scale deployments) include not collecting prior knowledge of household, 
business or community dynamics (e.g., budget preferences, consumption patterns, budgetary goals 
and restrictions), having little prior knowledge of end-user behavior, and no data or understanding of 
the local dynamics regarding the psychology of scarcity. These design flaws can lead to poorly designed 
mechanisms to overcome the energy efficiency gap (e.g., requesting access to a savings account to 
provide financing, when 49% of adults in Latin America do not have access to traditional financial 
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services), rebound effects (e.g., users increasing their energy consumption after implementation of an 
efficiency pilot), and lack of deep and permanent benefits for project participants. For example, in our 
pilot, not having designed a final services program in parallel to our flexible demand and behavioral 
energy efficiency intervention meant that our participants were not able to make long-term 
investments towards their home, business, or budget. Future successful programs would reduce 
budget uncertainty and instability, reduce the time required to learn about energy efficiency, provide 
transport to buy efficient appliances (and discard old ones), and simplify paperwork, among many 
other challenges that end-users commonly face.  
 
There are also important top-down challenges to scale energy efficiency and flexible demand projects 
in resource constrained environments. Because there is no utility de-coupling (splitting the utility’s 
earnings from its sales) in most (if not all) countries of the rising south, efficiency and flexible demand 
interventions at scale would generate a loss and hence not be palatable to most utilities. A flexible 
demand strategy that would arguably allow a utility to increase revenue through the purchase of 
cheaper energy, for example, would be rejected as the utility would be required by a regulator to reduce 
near-future rates due to their purchase of cheaper energy. The absence of financial mechanisms or 
structures to incentivize utilities to participate in large-scale and effective energy efficiency and flexible 
demand means that support for this important resource dwindles depending on political favor and 
interest. Thus, and faced with serious top-down implementation barriers, user-focused strategies are 
crucial for behavioral, energy efficiency, and smart city interventions to be successfully scaled.  
 
To develop solutions that succeed at the local level, city governments, utilities, and development banks 
must embrace the role of cost-effective pilots and demonstrations. Designing top-down systems and 
solutions is expensive and ineffective if solutions are not adopted, if the results are far smaller than 
originally intended (or in the opposite direction), or if the approach is missing key design elements. 
Recruiting entrepreneurs and local developers to re-imagine existing business models and technologies 
in local contexts, and piloting these innovations, is crucial to scaling energy efficiency, and socially 
inclusive smart city solutions. If well implemented, pilot projects can lead to understanding behavioral 
community and technology dynamics that are crucial to make changes to existing technology, and 
future large scale programs, to avoid past mistakes and prevent future ones. Cities and neighborhoods 
that champion these small steps and pilot initiatives like likely reap the benefits of better use of funds, 
and deeper and more widespread benefits towards local-participants.  
 
With support from the Link Foundation Fellowship I’ve presented some results from Latin America’s 
first pilot of micro-level (households and micro-enterprises) demand-side management and behavioral 
energy efficiency in low-income neighborhoods of Managua, Nicaragua. Previous studies evaluating 
these two strategies often explored them separately, and further, they usually investigated issues related 
to behavior, technology, and opportunities for social co-benefits in isolation. Despite a large potential 
for behavioral energy efficiency and demand-side management in low, low-middle income 
communities, real-world pilot programs remain scant. We used a randomized experiment in which 
thirty participants (households and micro-enterprises) received a wireless sensor gateway that enabled 
flexible demand of their refrigerators and freezers, and provided them with co-designed high-
resolution energy information. Another thirty participants were part of a control group. The 
treatment-group reduced their energy consumption by nine percent relative to the control, and 
participated extensively in peak-shaving flexible demand. Increased energy literacy, improved financial 
management and user empowerment were also identified as intervention co-benefits. We found that 
improved access to energy information was more important than cash when incentivizing flexible 
demand participation, and documented the multiple barriers to scale flexible demand and energy 
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efficiency strategies, including bottom-up (e.g., appliance financing) and top-down (e.g., decoupling) 
challenges as well as ways to overcome them. As more low, low-middle income countries transition 
away from fossil fuels, interventions such as this one will become increasingly necessary and attractive.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Bottom-Up and Top-Down Opportunities and Challenges for Flexible Demand and 
Behavioral Energy Efficiency in Data-Limited Low-Carbon Resource Constrained Environments. 
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Bottom-up
Opportunities                          &                                Challenges

1. High Resolution Interaction, Co-Design and Good 
Customer Service:

• Leads to high engagement (e.g., 9% energy 
savings, 80% participation in flexible demand).

2. Understanding, and Support of Intrinsic Motivations:
• Fosters high engagement and positive interaction

with the local community (e.g., sharing information).
• Fosters desire to learn (e.g., increased literacy around

energy, water, and the household budget).

3. Creation of New Business Models:
• High engagement and community support, even in the 

absence of top-down support, leads to new business 
models  that can exist independently (e.g. a third-party 
retrofitting an appliance, room or home in exchange of 
appliance control for flexible demand). 

1. Little Prior Knowledge of Household, Business or Community 
Dynamics:

• Leads to poorly designed sustainability mechanisms (e.g., 
requesting recommendation letters, a savings account or 
access to a truck to access financing to energy efficient 
appliances).

2. Little Prior Knowledge of User Behaviour:
• Leads to failed deployments (e.g., large and small where 

there is a large rebound effect, or leads to increased 
consumption and waste). 

3. The Psychology of Scarcity:
• Projects that don’t take into account real life constraints 

(e.g., budget and time) to homes and businesses in low, 
low-middle income communities will create only marginal 
benefits (e.g., no realized net monetary savings, or long-
term benefits to household infrastructure or health).

Top-Down
Opportunities                          &                                Challenges

1. Small Investments in Pilot Projects Lead to Large Returns:
• Successful and un-succesful projects create best-

practices and lessons learned in order to avoid repeating 
mistakes at scale, and maximize the benefits of large-
scale deployments 

2. Inclusive Technological Leap Frogging: 
• Pilot projects lead to understanding behavioural, 

community and technology dynamics that are crucial to 
make changes to existing technology in order to avoid 
past mistakes and prevent future ones.

1. Absence of Decoupling:
• Without utility decoupling (the separation of utility sales from 

revenues. e.g., the case of electric utilities in California) it is hard for 
utilities to be incentivized to pursue flexible demand and 
behavioural energy efficiency at scale.

2. Absence of Long-Term Mechanisms to Support Best Practices:
• Without decoupling, there is an absence of long term mechanisms 

to pursue opportunities and best practices in energy efficiency and 
flexible demand. Support changes with the vicissitudes of political 
favour over time.


